
Homework 3: Solutions

2.3.2:

(a) z =
√

a2 − x2 − y2, so the partial derivatives ∂z/∂x and ∂z/∂y are:

∂z

∂x
=

−x
√

a2 − x2 − y2
.

∂z

∂y
=

−y
√

a2 − x2 − y2
.

At the points (0,0) and (a/2, a/2) we get:

∂z

∂x
(0,0) = 0.

∂z

∂y
(0,0) = 0.

∂z

∂x
(a/2, a/2) =

−a/2
√

a2 − a2/4 − a2/4
=

−a/2
√

a2/2
= −

1
√

2

a

∣a∣
.

∂z

∂y
(a/2, a/2) =

−a/2
√

a2 − a2/4 − a2/4
=

−a/2
√

a2/2
= −

1
√

2

a

∣a∣
.

(b) z = log
√

1 + xy = 1
2 log(1 + xy)

∂z

∂x
=

y

2(1 + xy)
.

∂z

∂y
=

x

2(1 + xy)
.

At the points (1,2) and (0,0) we get:

∂z

∂x
(1,2) =

2

2 ⋅ 3
= 1/3.

∂z

∂y
(1,2) =

1

2 ⋅ 3
= 1/6.

∂z

∂x
(0,0) = 0.

∂z

∂y
(0,0) = 0.
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(c) z = eax cos(bx + y):

∂z

∂x
= aeax cos(bx + y) − beax sin(bx + y).

∂z

∂y
= −eax sin(bx + y).

So at the point (2π/b,0) we get:

∂z

∂x
(2π/b,0) = aea2π/b cos(2π) − b sin(2π) = ae2π

a
b .

∂z

∂y
(2π/b,0) = −aea2π/b sin(2π) = 0.

2.3.25:

f(x, y, z) = x2 + y2 − z2, so the gradient at (x, y, z) and in particular at
(0,0,1) is:

∇f(x, y, z) = (2x,2y,−2z)

∇f(0,0,1) = (0,0,−2) = −2k

2.4.2: The curve c(t) = (2 sin t,4 cos t),0 ≤ t ≤ 2π looks like:
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2.4.8:

c(t) = (sin 3t)i + (cos 3t)j + 2t3/2k, so the velocity vector is:

c′(t) = (3 cos 3t)i + (−3 sin 3t)j + 3t1/2k

2.4.16:

The position of the particle in space is c(t) = (6t,3t2, t3), so its velocity
vector at time t = 0 is:

c′(0) = (6,6t,3t2)∣t=0 = (6,0,0).

2.4.22:

The particle moving along c(t) = (sin et, t,4 − t3), flies off on tangent at
t = t0 = 1. Want its position at time t = t1 = 2, (i.e. 1 unit of time after flying
off).

Note that c′(t) = (et cos(et),1,−3t2).

The tangent line at t0 is parametrized as:

l(s) = c(t0) + sc′(t0) = (sin e,1,3) + s(e cos e,1,−3).

Since we want the position of the particle 1 unit of time after flying off
on the tangent, we get its position as:

l(1) = (sin e,1,3) + (e cos e,1,−3) = (sin e + e cos e,2,0).

2.4.24:

Want to show that for the spiral c(t) = (et cos t, et sin t), the angle between
c(t) and c′(t) = (et(cos t − sin t), et(sin t + cos t)) is constant.

Recall, the angle θ between vectors a and b satisfies a ⋅b = ∣∣a∣∣ ⋅ ∣∣b∣∣ cos(θ).
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So the angle at time t between c(t) and c′(t) satisfies:

cos(θ(t)) =
c(t) ⋅ c′(t)

∣∣c(t)∣∣ ⋅ ∣∣c′(t)∣∣

And since,
c(t) ⋅ c′(t) = e2t(cos2 t + sin2 t) = e2t

∣∣c(t)∣∣ =
√

e2t(sin2 t + cos2 t) = et

∣∣c′(t)∣∣ =
√

e2t((cos t − sin t)2 + (cos t + sin t)2) = et
√

2(cos2 t + sin2 t) =
√

2et

We get:

cos(θ(t)) =
e2t
√

2etet
=

1
√

2
= cos(

π

4
)

So the angle between c(t) and c′(t), at any time t is the constant π/4, as
depicted below:

-2 -1 1 2
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-1
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2.5.3:

Recall first special case of the chain rule for f ○ c:

(f ○ c)′(t) = (∇f)(c(t)) ⋅ c′(t)

(a) f(x, y) = xy, c(t) = (et, cos t).

(f ○ c)(t) = et cos t. Hence,
(f ○ c)′(t) = et cos t − et sin t.

Whereas, (∇f)(c(t)) = (y, x)∣c(t) = (y, x)∣(et,cos t) = (cos t, et).
And c′(t) = (et,− sin t), so we get:

(∇f)(c(t)) ⋅ c′(t) = (cos t, et) ⋅ (et,− sin t) = et cos t− et sin t, the same as
(f ○ c)′(t), so the rule is verified.

(b) f(x, y) = exy, c(t) = (3t2, t3).

(f ○ c)(t) = e3t
5
. Hence,

(f ○ c)′(t) = 15t4e3t
5
.

Whereas, (∇f)(c(t)) = (yexy, xexy)∣c(t) = (yexy, xexy)∣(3t2,t3) = (t3e3t
5
,3t2e3t

5
).

And c′(t) = (6t,3t2), so we get:

(∇f)(c(t)) ⋅ c′(t) = (t3e3t
5
,3t2e3t

5
) ⋅ (6t,3t2) = 6t4e3t

5
+ 9t4e3t

5
, the same

as (f ○ c)′(t), so the rule is verified.

(c) f(x, y) = (x2 + y2) log
√

x2 + y2 = (x
2
+y2)
2 log(x2 + y2), c(t) = (et, e−t).

(f ○ c)(t) = 1
2(e

2t
+ e−2t) log(e2t + e−2t). Hence,

(f ○ c)′(t) = (e2t − e−2t) log(e2t + e−2t) + 1
2(e

2t
+ e−2t)2(e

2t
−e−2t)

(e2t+e−2t) , i.e.

(f ○ c)′(t) = (e2t − e−2t)(log(e2t + e−2t) + 1)
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(∇f)(c(t)) = (x log(x2 + y2) +
(x2 + y2)

2

2x

(x2 + y2)
, y log(x2 + y2) +

(x2 + y2)

2

2y

(x2 + y2)
)∣c(t)

= (x log(x2 + y2) + x, y log(x2 + y2) + y)∣(et,e−t)

= (et log(e2t + e−2t) + et, e−t log(e2t + e−2t) + e−t).

And c′(t) = (et,−e−t), so we get:

(∇f)(c(t))⋅c′(t) = (et log(e2t+e−2t)+et, e−t log(e2t+e−2t)+e−t)⋅(et,−e−t) =
e2t log(e2t + e−2t) + e2t − e−2t log(e2t + e−2t) − e−2t, indeed the same as
(f ○ c)′(t) upon rearrangement, so the rule is verified.

(d) f(x, y) = xex
2
+y2 , c(t) = (t,−t).

(f ○ c)(t) = te2t
2
. Hence,

(f ○ c)′(t) = e2t
2
+ 4t2e2t

2
.

Whereas, (∇f)(c(t)) = (ex
2
+y2

+2x2ex
2
+y2 ,2xyex

2
+y2
)∣(t,−t) = (e2t

2
+2t2e2t

2
,−2t2e2t

2
).

And c′(t) = (1,−1), so we get:

(∇f)(c(t)) ⋅ c′(t) = (e2t
2
+ 2t2e2t

2
,−2t2e2t

2
) ⋅ (1,−1) = e2t

2
+ 4t2e2t

2
, the

same as (f ○ c)′(t), so the rule is verified.

2.5.4:

c′(t) was already computed in 2.5.3 as follows:

(a) c′(t) = (et,− sin t)

(b) c′(t) = (6t,3t2)

(c) c′(t) = (et,−e−t)

(d) c′(t) = (1,−1)
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