Homework 3: Solutions

2.3.2:
(a) z=+/a?-a?%-y?, so the partial derivatives 0z/0x and 0z/0Jy are:
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At the points (1,2) and (0,0) we get:
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(c) z=e*cos(bx +y):

0z = ae® cos(bx +y) — be® sin(bx + y).
Ox

0z = —e"sin(bz +y).

dy

So at the point (27/b,0) we get:
0z a2m /b : 27
8—(277/(), 0) = ae cos(2m) — bsin(27) = ae”™®.
x
g—;(Zﬂ/b, 0) = —ae®®>/sin(27) = 0.
2.3.25:

f(x,y,2) = 22 + y?2 — 22, so the gradient at (z,y,z) and in particular at
(0,0,1) is:

Vf(zr,y,2)=(2z,2y,-2z)
v/f(0,0,1) = (0,0,-2) = -2k

2.4.2: The curve c(t) = (2sint,4cost),0 < t < 27 looks like:

t=r/2
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2.4.8:
c(t) = (sin3t)i+ (cos 3t)j + 2t3/2k, so the velocity vector is:
c'(t) = (3cos3t)i+ (-3sin3t)j + 3t1/%k

2.4.16:

The position of the particle in space is c(t) = (6t,3t2,¢3), so its velocity
vector at time t = 0 is:

c'(0) = (6, 6t,3t?)|;=0 = (6,0,0).
2.4.22:

The particle moving along c¢(t) = (sinet,t,4 - ¢3), flies off on tangent at
t =to=1. Want its position at time t = ¢; = 2, (i.e. 1 unit of time after flying
off).

Note that ¢/(t) = (e cos(e), 1,-3t2).

The tangent line at t; is parametrized as:

1(s) = c(ty) + sc'(tg) = (sine, 1,3) + s(ecose, 1,-3).

Since we want the position of the particle 1 unit of time after flying off
on the tangent, we get its position as:

1(1) = (sine, 1,3) + (ecose, 1,-3) = (sine + ecose, 2,0).
2.4.24:

Want to show that for the spiral c(t) = (e’ cost, et sint), the angle between
c(t) and c/(t) = (e*(cost —sint), el (sint + cost)) is constant.

Recall, the angle 6 between vectors a and b satisfies a-b = ||a||-||b|| cos(0).



So the angle at time t between c(¢) and c¢’(t) satisfies:

o c(t)-c(t)
cos(0(t)) = lle(®)]] - |lc’ ()|
And since,

c(t)-c'(t) = e2(cos?t +sin’t) = 2
llc(®)|| = /et (sin®t + cos?t) = et
I’ ()] = \/e2((cost —sint)2 + (cost +sint)?) = e'\/2(cos?t +sin’ t) = \/2¢!

We get:
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So the angle between c(t) and ¢/(t), at any time ¢ is the constant 7/4, as
depicted below:




2.5.3:

Recall first special case of the chain rule for foc:

(feoe)'(t) = (VS)(c())-c'(t)

(a) f(x,y) ==y, c(t) = (e, cost).

(foc)(t) = et cost. Hence,
(foc)(t)=etcost—elsint.

Whereas) (Vf)(c(t)) = (yal')|c(t) = (yvm)|(ei,cost) = (COSt, et)-
And c'(t) = (e!, -sint), so we get:

(V) (c(t))-c/(t) = (cost,et) - (e, —sint) = et cost — et sint, the same as
(foc)/(t), so the rule is verified.

(b) f(z,y) =€, c(t) = (312, £).

(foc)(t) =e3”. Hence,
(foc)(t) = 15t4e3”.

Whereas, (7 £)(¢(£)) = (5, 26|y = (e, 267 0) = (3, 3t23),
And c'(t) = (6t,3t?), so we get:

(V) (c(t))-c'(t) = (133 3t2e3°) - (6, 3t2) = 6t1e3” + 9t4e3”” | the same
as (foc)(t), so the rule is verified.

(©) fx,y) = (22 +y?)log /2% + % = C28 D log(22 + ¢2), c(t) = (¢!, et).

(foc)(t)=3(e +e2)log(e? +e2t). Hence,

(foe)(t) = (e —e2)log(e +e2) + 5(e2 + o) 2o e,
(foc)(t)= (e —e?)(log(e* +e7*) +1)
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= (zlog(a® + y?) + z,ylog(z® + y?) + y)|(et, e
= (e'log(e* +e2) + et e log(e® + e72) +e7).

And c'(t) = (e!,—e7), so we get:

(V)(c(t))c'(t) = (et log(et+e2)+et, et log(eX+e~2t)+et)-(et, —e7t) =
e?log(e? + e7?t) + e — et log(e? + e72t) — e72! indeed the same as
(f oc)'(t) upon rearrangement, so the rule is verified.

(d) f(x,y) =we= " c(t) = (t,~t).

(foc)(t) =te*”. Hence,
(foc)(t)=e +4t2e2°

Whereas, (Vf)(c(t)) = (e2* " +222e7* " 2xye™ "),y = (€2 +2t2e2°, ~24221%),
And c'(t) = (1,-1), so we get:

(V) (c(t))-c/(t) = (e2® + 2t2e2" —212e2%) . (1,-1) = €2 + 4t2e2" | the
same as (f oc)’(t), so the rule is verified.

2.5.4:

c/(t) was already computed in 2.5.3 as follows:

(a) c/(t) = (et,—sint)
(b) c'(t) = (6t,3t?)
(c) c'(t) = (', -e™)

(d) ¢'(t) = (1,-1)



